Sequential metric dimension for random graphs
نویسندگان
چکیده
In the localization game on a graph, goal is to find fixed but unknown target node $v^\star$ with least number of distance queries possible. $j^{th}$ step game, player single $v_j$ and receives, as an answer their query, between nodes $v^\star$. The sequential metric dimension (SMD) minimal that needs guess absolute certainty, no matter where is. term SMD originates from related notion (MD), which can be defined same way SMD, except player's are non-adaptive. this work, we extend results \cite{bollobas2012metric} MD Erd\H{o}s-R\'enyi graphs SMD. We that, in connected graphs, constant factor apart. For lower bound present clean analysis by combining tools developed for novel coupling argument. upper show strategy greedily minimizes candidate targets each uses asymptotically optimal graphs. Connections source localization, binary search birthday problem discussed.
منابع مشابه
Metric Dimension for Random Graphs
The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملthe metric dimension and girth of graphs
a set $wsubseteq v(g)$ is called a resolving set for $g$, if for each two distinct vertices $u,vin v(g)$ there exists $win w$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. the minimum cardinality of a resolving set for $g$ is called the metric dimension of $g$, and denoted by $dim(g)$. in this paper, it is proved that in a connected graph $...
متن کاملMetric Dimension for Amalgamations of Graphs
A set of vertices S resolves a graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G. Let {G1, G2, . . . , Gn} be a finite collection of graphs and each Gi has a fixed vertex v0i or a fixed edge e0i called a terminal vertex or edge, respectively. The vertex-amalgamation of G1, ...
متن کاملOn the metric dimension and fractional metric dimension for hierarchical product of graphs
A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W . The metric dimension for G, denoted by dim(G), is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product G2 2 uG1 1 of two rooted graphs G2 2 and G u1 1 , we first introduce a new parameter, the rooted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2021
ISSN: ['1475-6072', '0021-9002']
DOI: https://doi.org/10.1017/jpr.2021.16